Kajian Thermal Spray Coating dengan Teknologi High Velocity Oxy-Fuel (HVOF) serta Perlakuan Pasca Prosesnya sebagai Pelindung Boiler Tubes Pembangkit Listrik Tenaga Uap

Penulis

  • Muhamad Waldi Teknik Metalurgi, Fakultas Teknologi Manufaktur, Universitas Jenderal Achmad Yani, Bandung, Indonesia
  • Eddy Agus Basuki Teknik Metalurgi, Fakultas Teknik Pertambangan dan Perminyakan, Institut Teknologi Bandung, Bandung, Indonesia
  • Budi Prawara Pusat Riset Material Maju, Badan Riset dan Inovasi Nasional, Bandung, Indonesia
  • Erie Martides Pusat Riset Material Maju, Badan Riset dan Inovasi Nasional, Bandung, Indonesia
  • Endro Juniarto Pusat Riset Mekatronika Cerdas, Badan Riset dan Inovasi Nasional, Bandung, Indonesia

DOI:

https://doi.org/10.54082/jupin.124

Kata Kunci:

HVOF, Perlakuan Pasca Pelapisan, Pembangkit Listrik Tenaga Uap, Thermal Spray

Abstrak

Seiring dengan kebijakan pemerintah Indonesia mengenai rencana elektrifikasi nasional dengan mengembangkan sarana pembangkit listrik berkapasitas 35.000 MW yang dimulai sejak tahun 2014, maka keperluan akan material yang tahan terhadap temperatur tinggi menjadi tuntutan penerapan, terlebih lagi material-material yang dikhususkan untuk peralatan teknis seperti ketel uap (boiler) sebagai pemasok uap untuk menggerakan turbin Pembangkit Listrik Tenaga Uap (PLTU). Tantangan operasional material pada temperatur tinggi menjadi hal yang serius, terutama karena penggunaan bahan bakar batubara yang bermutu rendah pada sistem kombusi yang menimbulkan masalah degradasi pada permukaan pipa seperti erosi dan korosi sehingga membatasi umur pakai pipa. Berbagai teknologi pelapisan Thermal Spray Coating untuk operasional temperatur tinggi telah banyak dikembangkan dengan tujuan melindungi pipa-pipa boiler dari lingkungan agresif, meningkatkan efisiensi panas, dan mengurangi kehilangan waktu akibat kerusakan. Teknologi High Velocity Oxy Fuel (HVOF) merupakan satu diantara metode yang dapat direkomendasikan untuk dimanfaatkan sebagai pelindung pipa boiler di Pembangkit Listrik Tenaga Uap (PLTU). Kajian berikut mendiskusikan State of The Art metode perlindungan pipa boiler menggunakan Thermal Spray Coating (TSC) dengan teknologi HVOF, metode-metode karakterisasi, serta perlakuan pasca prosesnya guna meningkatan kehandalan lapisan pada saat pelayanan.

Referensi

Basuki, E. A. (2016). Paduan logam untuk aplikasi temperatur tinggi dan penghematan energi. ITB.

Bergmann, C. P., & Vicenzi, J. (2011). Protection against Erosive Wear using Thermal Sprayed Cermet: A Review. https://doi.org/10.1007/978-3-642-21987-0

Bhatia, R., Singh, H., & Sidhu, B. S. (2012). Characterisation of 80% Cr3C2-20% (Ni-20cr) Coating and Erosion Behaviour. Asian Journal of Engineering and Applied Technology (AJEAT). https://www.trp.org.in/issues/characterisation-of-80-cr3c2-20-ni-20cr-coating-and-erosion-behaviour

Bose, S. (2007). OXIDATION- AND CORROSION-RESISTANT COATINGS. In High Temperature Coatings. Butterworth-Heinemann. https://doi.org/10.1016/B978-075068252-7/50007-X

Chatha, S. S., Sidhu, H. S., & Sidhu, B. S. (2012). The effects of post-treatment on the hot corrosion behavior of the HVOF-sprayed Cr 3C 2-NiCr coating. Surface and Coatings Technology, 206(19–20), 4212–4224. https://doi.org/10.1016/j.surfcoat.2012.04.026

Cho, T. Y., Yoon, J. H., Cho, J. Y., Joo, Y. K., Kang, J. H., Zhang, S., Chun, H. G., Hwang, S. Y., & Kwon, S. C. (2009). Surface properties and tensile bond strength of HVOF thermal spray coatings of WC-Co powder onto the surface of 420J2 steel and the bond coats of Ni, NiCr, and Ni/NiCr. Surface and Coatings Technology, 203(20–21), 3250–3253. https://doi.org/10.1016/j.surfcoat.2009.04.003

Ctibor, P., Lechnerová, R., & Beneš, V. (2006). Quantitative analysis of pores of two types in a plasma-sprayed coating. Materials Characterization, 56(4-5 SPEC. ISS.), 297–304. https://doi.org/10.1016/j.matchar.2005.11.016

Davis, J. (2004). Handbook of Thermal Spray Technology. ASM International. www.asminternational.org

di Gianfrancesco, A. (n.d.). Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants (A. di Gianfrancesco, Ed.). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/C2014-0-04826-5

Fantassi, S., Vardelle, M., Fauchais, P., & Moreau, C. (1992). Investigation of the Splat Formation Vs. Different Particulate Temperatures and Velocities Prior to Impact. Thermal Spray: International Advances in Coatings Technology, 755–760.

Fauchais, P. (2015). Current status and future directions of thermal spray coatings and techniques. In Future Development of Thermal Spray Coatings: Types, Designs, Manufacture and Applications (pp. 17–49). Woodhead Publishing. https://doi.org/10.1016/B978-0-85709-769-9.00002-6

Fiedler, T., Groß, R., Rösler, J., & Bäker, M. (2017). Damage mechanisms of metallic HVOF-coatings for high heat flux application. Surface and Coatings Technology, 316, 219–225. https://doi.org/10.1016/j.surfcoat.2017.03.037

Guilemany, J. M., Espallargas, N., Suegama, P. H., & Benedetti, A. v. (2006). Comparative study of Cr3C2-NiCr coatings obtained by HVOF and hard chromium coatings. Corrosion Science, 48(10), 2998–3013. https://doi.org/10.1016/j.corsci.2005.10.016

Hong, S., Wu, Y., Wang, Q., Ying, G., Li, G., Gao, W., Wang, B., & Guo, W. (2013). Microstructure and cavitation-silt erosion behavior of high-velocity oxygen-fuel (HVOF) sprayed Cr3C2-NiCr coating. Surface and Coatings Technology, 225, 85–91. https://doi.org/10.1016/j.surfcoat.2013.03.020

Huda, M., Hudaya, G. K., Ningrum., N. S., & Suganal. (2012). Peluang aplikasi teknologi pengeringan batubara dan blending batubara di indonesia ditinjau dari segi ekonomi dan lingkungan. Jurnal Teknologi Mineral Dan Batubara, 8(3), 152–163. https://doi.org/https://doi.org/10.30556/jtmb.Vol8.No3.2012.787

James, M. (2004). Optimum HVOF surface finish recommendation for high-performance dynamic seal applications. Sealing Technology, 2004(10), 9–10. https://doi.org/10.1016/S1350-4789(04)00368-X

Katranidis, V., Gu, S., Allcock, B., & Kamnis, S. (2017). Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part A: Influence of kinematic spray parameters on thickness, porosity, residual stresses and microhardness. Surface and Coatings Technology, 311, 206–215. https://doi.org/10.1016/j.surfcoat.2017.01.015

Kembaiyan, K. T., & Keshavan, K. (1995). Combating severe fluid erosion and corrosion of drill bits using thermal spray coatings. Wear, 186–187(PART 2), 487–492. https://doi.org/10.1016/0043-1648(95)07142-3

Khan, M. N., Shah, S., & Shamim, T. (2019). Investigation of operating parameters on high-velocity oxyfuel thermal spray coating quality for aerospace applications. International Journal of Advanced Manufacturing Technology, 103(5–8), 2677–2690. https://doi.org/10.1007/s00170-019-03696-0

Kim, J. H., Baik, K. H., Seong, B. G., & Hwang, S. Y. (2007). Effects of post-spraying heat treatment on wear resistance of WC-Co nanocomposite coatings. Materials Science and Engineering A, 449–451, 876–879. https://doi.org/10.1016/j.msea.2006.02.320

Kumar, A., Sharma, A., & Goel, S. K. (2016). Erosion behaviour of WC–10Co–4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying. Applied Surface Science, 370, 418–426. https://doi.org/10.1016/j.apsusc.2016.02.163

Liu, M. M., Hu, H. X., & Zheng, Y. G. (2017). Effects of three sealing methods of aluminum phosphate sealant on corrosion resistance of the Fe-based amorphous coating. Surface and Coatings Technology, 309, 579–589. https://doi.org/10.1016/j.surfcoat.2016.12.033

Martides, E., Prawara, B., Ardy, H., Junianto, E., & Priyono, B. (2017). The influence of particles size and composition variation of NiCr-CrC(20NiCr) metal matrix composites coatings properties on boiler tubes application. Materials Science Forum, 889 MSF, 30–35. https://doi.org/10.4028/www.scientific.net/MSF.889.30

Muharom. (n.d.). Studi Pembangunan Pltu Batubara Minahasa 2 X 55 MW Di Kema, Minahasa Utara, Sulawesi Utara Kaitannya Dengan Tarif Dasar Listrik Regional Menurut UU No 30 Tahun 2009 Tentang Ketenagalistrikan. Retrieved August 20, 2022, from http://digilib.its.ac.id/public/ITS-Undergraduate-12865-Paper.pdf

Murugan, K., Ragupathy, A., Balasubramanian, V., & Sridhar, K. (2014). Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC-10Co-4Cr coatings. Surface and Coatings Technology, 247, 90–102. https://doi.org/10.1016/j.surfcoat.2014.03.022

Oksa, M., Turunen, E., Suhonen, T., Varis, T., & Hannula, S. P. (2011). Optimization and characterization of high velocity oxy-fuel sprayed coatings: Techniques, materials, and applications. Coatings, 1(1), 17–52. https://doi.org/10.3390/coatings1010017

Pawłowski, Lech. (2008). The science and engineering of thermal spray coatings. Wiley.

Picas, J. A., Rupérez, E., Punset, M., & Forn, A. (2013). Influence of HVOF spraying parameters on the corrosion resistance of WC-CoCr coatings in strong acidic environment. Surface and Coatings Technology, 225, 47–57. https://doi.org/10.1016/j.surfcoat.2013.03.015

Prasetyo. (n.d.). Studi Pembangunan PLTU Tanah Grogot 2x7 MW Di Kabupaten Paser Kalimantan Timur Dan Pengaruh Terhadap Tarif Listrik Regional Kalimantan Timur. Retrieved August 20, 2022, from http://digilib.its.ac.id/ITS-Undergraduate-3100010039836/12408

Rhys-Jones, T. N. (1990). The use of thermally sprayed coatings for compressor and turbine applications in aero engines. In Surface and Coatings Technology. https://doi.org/https://doi.org/10.1016/0257-8972(90)90109-P

Riyanto, E., & Prawara, B. (2010). Mikrostruktur dan Karakterisasi Sifat Mekanik Lapisan Cr3C2-NiAl-Al2O3 Hasil Deposisi Dengan Menggunakan High Velocity Oxygen Fuel Thermal Spray Coating. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 01(1), 1–4. https://doi.org/10.14203/j.mev.2010.v1.1-4

Sadeghimeresht, E., Markocsan, N., Nylén, P., & Björklund, S. (2016). Corrosion performance of bi-layer Ni/Cr 2 C 3 -NiCr HVAF thermal spray coating. Applied Surface Science, 369, 470–481. https://doi.org/10.1016/j.apsusc.2016.02.002

Schneider, I. K. E., Belashchenko, V., Dratwinski, M., Siegmann, S., & Zagorski, A. (2006). Thermal Spraying for Power Generation Components.

Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2005). Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Materials Science, 41(6), 805–823.

Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006). Characterizations and hot corrosion resistance of Cr3C 2-NiCr coating on Ni-base superalloys in an aggressive environment. Proceedings of the International Thermal Spray Conference, 811–816. https://doi.org/10.1361/105996306X147162

Sivakumar, R., & Mordike, B. L. (1989). High temperature coatings for gas turbine blades: A review. Surface and Coatings Technology, 37(2), 139–160. https://doi.org/https://doi.org/10.1016/0257-8972(89)90099-6

Stokes, J. (2005). The Theory and Application of the HVOF Thermal Spray Process.

Stringer, J. (1998). Coatings in the electricity supply industry: past, present, and opportunities for the future. Surface and Coatings Technology, 108, 1–9. https://doi.org/https://doi.org/10.1016/S0257-8972(98)00642-2

Szymański, K., Hernas, A., Moskal, G., & Myalska, H. (2015). Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers - A review. Surface and Coatings Technology, 268, 153–164. https://doi.org/10.1016/j.surfcoat.2014.10.046

Thakur, L., & Arora, N. (2017). A study of processing and slurry erosion behaviour of multi-walled carbon nanotubes modified HVOF sprayed nano-WC-10Co-4Cr coating. Surface and Coatings Technology, 309, 860–871. https://doi.org/10.1016/j.surfcoat.2016.10.073

Vignesh, S., Shanmugam, K., Balasubramanian, V., & Sridhar, K. (2017). Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings. Defence Technology, 13(2), 101–110. https://doi.org/10.1016/j.dt.2017.03.001

Waldi, M., Basuki, E. A., & Prawara, B. (2018). Quality characterization of HVOF thermal spray coating with NiCr matrix composite for protection application of coal fired boiler tubes. IOP Conference Series: Materials Science and Engineering, 432(1). https://doi.org/10.1088/1757-899X/432/1/012011

Wu, Y. S., Qiu, W. Q., Yu, H. Y., Zhong, X. C., Liu, Z. W., Zeng, D. C., & Li, S. Z. (2011). Cycle oxidation behavior of nanostructured Ni60-TiB 2 composite coating sprayed by HVOF technique. Applied Surface Science, 257(23), 10224–10232. https://doi.org/10.1016/j.apsusc.2011.07.026

Yang, Q., Senda, T., & Ohmori, A. (2003). Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12% Co coatings. Wear, 254, 23–34.

Zhang, S. H., Cho, T. Y., Yoon, J. H., Li, M. X., Shum, P. W., & Kwon, S. C. (2009). Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-CrC-Ni coatings modified by laser heat treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 162(2), 127–134. https://doi.org/10.1016/j.mseb.2009.03.017

Diterbitkan

19-02-2023

Cara Mengutip

Waldi, M., Basuki, E. A., Prawara, B., Martides, E., & Juniarto, E. (2023). Kajian Thermal Spray Coating dengan Teknologi High Velocity Oxy-Fuel (HVOF) serta Perlakuan Pasca Prosesnya sebagai Pelindung Boiler Tubes Pembangkit Listrik Tenaga Uap. Jurnal Penelitian Inovatif, 3(1), 41–60. https://doi.org/10.54082/jupin.124