Identifikasi Nilai Konstanta Daun Kopi Arabika dan Robusta Menggunakan Pengolahan Citra Digital
DOI:
https://doi.org/10.54082/jupin.1756Kata Kunci:
Kopi Arabika, Kopi Robusta, Konstanta Daun, Luas Daun, Pengolahan CitraAbstrak
Kopi arabika dan robusta merupakan komoditas dengan kontribusi signifikan terhadap ekspor pertanian Indonesia, sehingga diperlukan metode pemantauan pertumbuhan tanaman yang efisien. Metode pengukuran luas daun langsung di lapangan umumnya tidak efisien, sehingga pendekatan matematis sederhana seperti metode Montgomery menjadi alternatif yang praktis. Namun, nilai konstanta daun (k) spesifik untuk kedua jenis kopi belum tersedia, khususnya dalam konteks pengolahan citra digital. Penelitian ini bertujuan untuk mengidentifikasi nilai konstanta daun kopi arabika dan robusta berbasis data morfometrik hasil pengolahan citra digital. Pengambilan data dilakukan melalui pengambilan citra daun dengan latar belakang kontras menggunakan smartphone, kemudian citra diproses dengan software ImageJ untuk memperoleh luas daun aktual. Pengukuran panjang dan lebar daun dilakukan secara manual untuk menghitung nilai k, yang selanjutnya divalidasi melalui analisis statistik evaluatif. Nilai konstanta daun yang diperoleh yaitu sebesar 0,747 untuk arabika dan 0,701 untuk robusta, dengan nilai R2 sebesar 0,9954 dan 0,9953. Evaluasi statistik menunjukkan RMSE dan NRMSE rendah serta nilai NSE dan indeks Willmott (d) mendekati 1. Hasil ini membuka peluang penerapan metode estimasi luas daun secara cepat dan presisi dalam praktik pertanian kopi skala lapangan dan riset agronomi.
Referensi
Afiatan, A. S., Supriyanto, E. A., Al Ramadhani, F. M., & Firmansyah, D. (2024). Analisis kesesuaian lahan tanaman kopi arabika berbasis sistem informasi geografis di Kecamatan Paninggaran Kabupaten Pekalongan. Jurnal Penelitian Inovatif, 4(3), 1759–1770. https://doi.org/10.54082/jupin.682
Al Ramadhani, F. M. (2024). Identifikasi nilai konstanta daun tanaman rambutan dan jambu air berbasis pengolahan citra digital. Jurnal Penelitian Inovatif (JUPIN), 4(2), 655–664. https://doi.org/10.54082/jupin.400
Al Ramadhani, F. M., Bowo, C., & Slameto. (2023). The use of aquacrop model for soybean in various water availability within a lysimeter system. Journal of Applied and Agricultural Science and Technology, 7(4), 399–413. https://doi.org/10.55043/jaast.v7i4.153
Al Ramadhani, F. M., Sajuri, Amin, R., & Lutfiana, A. (2024). Metode pengukuran luas daun tanaman menggunakan bantuan objek tuntun berbasis pengolahan citra digital. Jurnal Pertanian Agros, 26(4), 1677–1688. https://doi.org/10.37159/jpa.v26i4.4832
Badan Pusat Statistik. (2024). Statistik Kopi Indonesia 2023 (Vol. 8). Badan Pusat Statistik.
da Silva, K. G. F., Maciel, L. M. da S., Villela, S. M., Pedrini, H., Morais, L. E., & Vieira, M. B. (2025a). Non-destructive leaf area estimation based on a semantic segmentation deep neural network. Computers and Electronics in Agriculture, 237, 110551. https://doi.org/10.1016/j.compag.2025.110551
da Silva, T. I., Ribeiro, J. E. da S., Santos, T. S. dos, Correia, M. R. S., Ribeiro, M. C. B. de O., Mendonça, A. J. T., da Silva, A. G. C., Oliveira, P. H. de A., Coêlho, E. dos S., Barros Júnior, A. P., da Silva, E. F., Rubio-Casal, A. E., de Lima, J. L. M. P., da Silva, T. G. F., & Jardim, A. M. da R. F. (2025). Can a non-destructive method predict the leaf area of species in the Caatinga Biome? Diversity, 17(4), 1–15. https://doi.org/10.3390/d17040234
de Sá, L. G., Albuquerque, C. J. B., Valadares, N. R., Brito, O. G., Mota, A. N., Fernandes, A. C. G., & de Azevedo, A. M. (2022). Area estimation of soybean leaves of different shapes with artificial neural networks. Acta Scientiarum - Agronomy, 44, 1–9. https://doi.org/10.4025/actasciagron.v44i1.54787
Elings, A. (2000). Estimation of leaf area in tropical maize. Agronomy Journal, 92(3), 436–444. https://doi.org/10.2134/agronj2000.923436x
Fu, W., Chen, Z., Cheng, Q., Li, Y., Zhai, W., Ding, F., Kuang, X., Chen, D., & Duan, F. (2025). Maize leaf area index estimation based on machine learning algorithm and computer vision. Agriculture, 15(12), 1–22. https://doi.org/10.3390/agriculture15121272
Gaspar, S., & Ramos, F. (2016). Caffeine: Consumption and Health Effects. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 573–578). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00099-4
Júnior, C. A. M. de A., Martins, G. D., Xavier, L. C. M., Vieira, B. S., Gallis, R. B. de A., Fraga Junior, E. F., Martins, R. S., Paes, A. P. B., Mendonça, R. C. P., & Lima, J. V. do N. (2022). Estimating coffee plant yield based on multispectral images and machine learning models. Agronomy, 12(12), 1–15. https://doi.org/10.3390/agronomy12123195
Krishnan, S., Matsumoto, T., Nagai, C., Falconer, J., Shriner, S., Long, J., Medrano, J. F., & Vega, F. E. (2021). Vulnerability of coffee (Coffea spp.) genetic resources in the United States. Genetic Resources and Crop Evolution, 68(7), 2691–2710. https://doi.org/10.1007/s10722-021-01217-1
Kruschke, J. K. (2015). Metric Predicted Variable with One Nominal Predictor. In J. Kruschke (Ed.), Doing Bayesian Data Analysis (pp. 553–581). Academic Press. https://doi.org/10.1016/B978-0-12-405888-0.00019-2
Montgomery, E. G. (1911). Correlation studies in corn. Annual report no. 24. Agricultural Experimental Station.
Nazeri, B., Crawford, M. M., & Tuinstra, M. R. (2021). Estimating leaf area index in row crops using wheel-based and airborne discrete return light detection and ranging data. Frontiers in Plant Science, 12, 1–14. https://doi.org/10.3389/fpls.2021.740322
Rico, Darma, R., Salman, D., & Mahyuddin. (2021). Problems identification of Arabica coffee commodities on traditional farming in Indonesia: A review. IOP Conference Series: Earth and Environmental Science, 886, 1–16. https://doi.org/10.1088/1755-1315/886/1/012069
Sala, F., Arsene, G. G., Iordănescu, O., & Boldea, M. (2015). Leaf area constant model in optimizing foliar area measurement in plants: A case study in apple tree. Scientia Horticulturae, 193, 218–224. https://doi.org/10.1016/j.scienta.2015.07.008
Sala, F., Dobrei, A., & Herbei, M. V. (2021). Leaf area calculation models for vines based on foliar descriptors. Plants, 10(11), 1–15. https://doi.org/10.3390/plants10112453
Sudianto, A. I., & Husna, A. (2025). Application of digital image processing to the measurement of Leaf Area Index (LAI) of rice plants (Oryza Sativa L.). Jurnal SimanteC, 13(2), 163–170.
Taugourdeau, S., le Maire, G., Avelino, J., Jones, J. R., Ramirez, L. G., Quesada, M. J., Charbonnier, F., Gómez-Delgado, F., Harmand, J.-M., Rapidel, B., Vaast, P., & Roupsard, O. (2014). Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry. Agriculture, Ecosystems & Environment, 192, 19–37. https://doi.org/10.1016/j.agee.2014.03.042
Zhang, W. (2020). Digital image processing method for estimating leaf length and width tested using kiwifruit leaves (Actinidia chinensis Planch). PLoS ONE, 15(7), 1–14. https://doi.org/10.1371/journal.pone.0235499
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 M. Raditya Panca Ardana, Farchan Mushaf Al Ramadhani, Sajuri

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.