Identification of Leaf Constant Values in Manalagi and Madu Mango Cultivars Based on Digital Image Processing

Penulis

  • Apriwijaya Apriwijaya Student of the Department of Agrotechnology, Faculty of Agriculture, University of Pekalongan, Indonesia
  • Farchan Mushaf Al Ramadhani Department of Agrotechnology, Faculty of Agriculture, University of Pekalongan, Indonesia
  • Ubad Badrudin Department of Agrotechnology, Faculty of Agriculture, University of Pekalongan, Indonesia
  • Fariz Kustiawan Alfarisy Department of Environmental Engineering, Chung Yuan Christian University, Touyuan, Taiwan

DOI:

https://doi.org/10.54082/jupin.1758

Kata Kunci:

Leaf Area Estimation, Leaf Constant, Manalagi Mango, Madu Mango, Digital Image Processing

Abstrak

Accurate leaf area measurement is crucial in plant physiology studies; however, conventional methods are often impractical and costly. This study aims to identify the leaf constant values of Manalagi and Madu mango cultivars using a digital image processing approach. A descriptive quantitative study was conducted at the Agrotechnology Laboratory of Pekalongan University using 40 healthy leaf samples from each cultivar. Leaf area was measured using ImageJ software, while leaf length and width were manually measured to calculate the leaf constant based on the Montgomery equation. The measurement data were analyzed using descriptive statistics, boxplots, linear regression analysis, and accuracy validation through RMSE, NRMSE, NSE, and Willmott’s index of agreement (d). The results showed that the average leaf constant value was 0.706 for Manalagi and 0.779 for Madu, with homogeneous data distribution and no outliers. The correlation between the measured leaf area and the predicted leaf area was very strong, with R² values of 0.9947 for Manalagi and 0.9992 for Madu, along with very low prediction errors (NRMSE of 0.015 for Manalagi and 0.009 for Madu). Moreover, the NSE and Willmott’s index values approached 1, indicating excellent model performance. These findings demonstrate that the derived leaf constants can be used as practical references for field leaf area estimation, contributing to more efficient agronomic research and horticultural crop management.

Biografi Penulis

Apriwijaya Apriwijaya, Student of the Department of Agrotechnology, Faculty of Agriculture, University of Pekalongan, Indonesia

Mahasiswa Program Studi Agroteknologi, Fakultas Pertanian, Universitas Pekalongan

Farchan Mushaf Al Ramadhani, Department of Agrotechnology, Faculty of Agriculture, University of Pekalongan, Indonesia

Program Studi Agroteknologi, Fakultas Pertanian, Universitas Pekalongan

Ubad Badrudin, Department of Agrotechnology, Faculty of Agriculture, University of Pekalongan, Indonesia

Program Studi Agroteknologi, Fakultas Pertanian, Universitas Pekalongan

Fariz Kustiawan Alfarisy, Department of Environmental Engineering, Chung Yuan Christian University, Touyuan, Taiwan

Department of Environmental Engineering, Chung Yuan Christian University, Touyuan, Taiwan

Referensi

Akram-ghaderi, F., & Soltani, A. (2007). Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate sub-humid environment. International Journal of Plant Production, 1(1), 63–71.

Al Ramadhani, F. M. (2024). Identifikasi nilai konstanta daun tanaman rambutan dan jambu air berbasis pengolahan citra digital. Jurnal Penelitian Inovatif (JUPIN), 4(2), 655–664. https://doi.org/10.54082/jupin.400

Al Ramadhani, F. M., Bowo, C., & Slameto. (2023). The use of aquacrop model for soybean in various water availability within a lysimeter system. Journal of Applied Agricultural Science and Technology, 7(4), 399–413. https://doi.org/10.55043/jaast.v7i4.153

Al Ramadhani, F. M., Sajuri, Amin, R., & Lutfiana, A. (2024). Metode pengukuran luas daun tanaman menggunakan bantuan objek tuntun berbasis pengolahan citra digital. Jurnal Pertanian Agros, 26(4), 1677–1688. https://doi.org/10.37159/jpa.v26i4.4832

Ardiani, I., & Jannah, M. (2023). Hubungan kekerabatan fenetik pada mangga (Mangifera indica L.) di Kecamatan Tambun Utara, Kabupaten Bekasi. Sains & Matematika, 8(1), 19–27. https://doi.org/10.26740/sainsmat.v8n1.p19-27

Bhattacharya, A. (2019). Effect of High-Temperature Stress on Crop Productivity. In Effect of High Temperature on Crop Productivity and Metabolism of Macro Molecules (pp. 1–114). Academic Press. https://doi.org/10.1016/B978-0-12-817562-0.00001-X

Breure, C. J., & Siregar, M. M. (2021). Reassessing the estimation of leaf area in oil palm (Elaeis guineensis Jacq.) by linear regression equation. Experimental Agriculture, 56, 815–824. https://doi.org/10.1017/S0014479720000332

Daningsih, E., Febriyanti, I., & Mardiyyaningsih, A. N. (2024). The thickness changes of anatomical ornamental monocotyledon plant leaves affected by the interactions between plant types and light intensity. Jurnal Agrikultura, 35(2), 352–364.

Elhany, N. A., Fajar, M. T. I., Ikbal, M., & Rahmah, M. (2024). Morphological characterization of mango (Mangifera indica) in Situbondo. International Collaborative Conference on Multidisciplinary Science, 1(2), 225–234. https://doi.org/10.70062/iccms.v1i2.51

Fu, W., Chen, Z., Cheng, Q., Li, Y., Zhai, W., Ding, F., Kuang, X., Chen, D., & Duan, F. (2025). Maize leaf area index estimation based on machine learning algorithm and computer vision. Agriculture, 15(12), 1–22. https://doi.org/10.3390/agriculture15121272

Gokkus, G., & Gokkus, M. K. (2024). Leaf area estimation based on ANFIS using embedded system and PV panel. Heliyon, 10(14), 1–10. https://doi.org/10.1016/j.heliyon.2024.e34149

Kailaku, S. I., Arkeman, Y., Purwanto, Y. A., & Udin, F. (2023). Appropriate harvest age of mango (Mangifera indica cv. Arumanis) for quality assurance in long distance transportation planning in Indonesia. Journal of Agriculture and Food Research, 14, 1–11. https://doi.org/10.1016/j.jafr.2023.100763

Koyama, K. (2023). Leaf area estimation by photographing leaves sandwiched between transparent clear file folder sheets. Horticulturae, 9, 1–20. https://doi.org/10.3390/horticulturae9060709

Kumar, M. K., Kumar, R. S., Sankar, V., Sakthivel, T., Karunakaran, G., & Tripathi, P. C. (2017). Non-destructive estimation of leaf area of durian (Durio zibethinus) – An artificial neural network approach. Scientia Horticulturae, 219, 319–325. https://doi.org/10.1016/j.scienta.2017.03.028

Kumar, R. (2009). Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Scientia Horticulturae, 122(1), 142–145. https://doi.org/10.1016/j.scienta.2009.03.019

Mardiah, A. H., Wulandari, Y. S., & Syahputra, F. (2024). Analisis faktor-faktor yang mempengaruhi pendapatan petani mangga (Mangifera indica L.) di Desa Sumberjaya Kecamatan Tempuran Kabupaten Karawang. Paspalum: Jurnal Ilmiah Pertanian, 12(2), 321–328.

Montgomery, E. G. (1911). Correlation studies in corn. Annual report no. 24. Agricultural Experimental Station.

Ngo, U. Q., Ngo, D. T., Nguyen, H. T., & Bui, T. D. (2022). Digital image processing methods for estimating leaf area of cucumber plants. Indonesian Journal of Electrical Engineering and Computer Science, 25(1), 317–328. https://doi.org/10.11591/ijeecs.v25.i1.pp317-328

Nguyen, T. P., & Do, K. T. (2025). Identification of mango (Mangifera indica L.) cultivars in the Mekong Delta using ISSR markers and DNA barcodes. Journal of Applied Biology & Biotechnology, 13(2), 68–75. https://doi.org/10.7324/JABB.2025.221280

Putu, M. L., Kriswiyanti, E., & Defiani, M. R. (2017). Analisis kekerabatan beberapa tanaman mangga (Mangifera spp.) berdasarkan karakteristik morfologi dan anatomi daun. Jurnal Simbiosis, 5(1), 7–10.

Qin, Z., Yang, H., Shu, Q., Yu, J., Xu, L., Wang, M., Xia, C., & Duan, D. (2024). Estimation of leaf area index for Dendrocalamus giganteus based on multi-source remote sensing data. Forest, 15(7), 1–22. https://doi.org/10.3390/f15071257

Ramadhan, F., Ramadana, M. M., Hastin, M. R., & Supriatna, A. (2024). Identifikasi karakter morfologi mangga (Mangifera Indica L.) di Kecamatan Panyileukan, Jawa Barat, Indonesia. Publikasi Ilmu Tanaman Dan Agribisnis (BOTANI), 1(3), 27–37. https://doi.org/10.62951/botani.v1i3.79

Rohman, A. K., & Zulfikar. (2021). Diversity tree varieties mango (Mangifera indica L.) in critical areas. AGARICUS: Advances Agriculture Science & Farming, 1(1), 1–5. https://doi.org/10.32764/agaricus.v1i1.1551

Sala, F., Arsene, G., Iordanescu, O., & Boldea, M. (2015). Leaf area constant model in optimizing foliar area measurement in plants: A case study in apple tree. Scientia Horticulturae, 193, 218–224. https://doi.org/10.1016/j.scienta.2015.07.008

Sembiring, M. B., Rahmi, D., Maulina, M., Tari, V., Rahmayanti, & Suwardi, A. B. (2020). Identifikasi karakter morfologi dan sensoris kultivar mangga (Mangifera indica L.) di Kecamatan Langsa Lama, Aceh, Indonesia. Jurnal Biologi Tropis, 20(2), 179–184. https://doi.org/10.29303/jbt.v20i2.1876

Sudianto, A. I., & Husna, A. (2025). Application of digital image processing to the measurement of Leaf Area Index (LAI) of rice plants (Oryza sativa L.). Jurnal SimanteC, 13(2), 163–170.

Utami, S., Baskoro, K., Khotimperwati, L., & Murningsih. (2019). Keragaman varietas mangga (Mangifera indica L.) di Kotamadya Semarang Jawa Tengah. Bioma, 21(2), 121–125. https://doi.org/10.14710/bioma.21.2.121-125

Walker, M. L., Dovoedo, Y. H., Chakraborti, S., & Hilton, C. W. (2018). An improved boxplot for univariate data. The American Statistician, 0(0), 1–6. https://doi.org/10.1080/00031305.2018.1448891

Williamson, D. F., Parker, R. A., & Kendrick, J. S. (1989). The box plot: A simple visual method to interpret data. Academia and Clinic, 110(11), 916–921. https://doi.org/10.1059/0003-4819-110-11-916

Wu, D., Phinn, S., Johansen, K., Robson, A., Muir, J., & Searle, C. (2018). Estimating changes in leaf area, leaf area density, and vertical leaf area profile for mango, avocado, and macadamia tree crowns using terrestrial laser scanning. Remote Sensing, 10(11), 1–17. https://doi.org/10.3390/rs10111750

Diterbitkan

29-08-2025

Cara Mengutip

Apriwijaya, A., Al Ramadhani, F. M., Badrudin, U., & Alfarisy, F. K. (2025). Identification of Leaf Constant Values in Manalagi and Madu Mango Cultivars Based on Digital Image Processing. Jurnal Penelitian Inovatif, 5(3), 2449–2458. https://doi.org/10.54082/jupin.1758