Naive Bayes Classifier with SMOTE for Sentiment Analysis of Blibli App Reviews on The Google Play Store
DOI:
https://doi.org/10.54082/jupin.1842Kata Kunci:
Analysis Sentiment, Blibli, Google Play Store, Naive Bayes, Python, SMOTEAbstrak
In the digital age, online shopping has become prevalent, with platforms like the Google Play Store enabling users to download and review mobile applications. This study aims to analyze the sentiment of user reviews for the Blibli application on the Google Play Store using the Naive Bayes Classifier, a simple yet effective algorithm for text classification tasks. A total of 2500 recent reviews were scraped using Google Colaboratory and the Python programming language. Data preprocessing steps included cleaning, stopword removal, tokenization, and stemming, followed by addressing class imbalance using the Synthetic Minority Over-sampling Technique (SMOTE). The dataset was divided into training and testing sets in an 80:20 ratio. The Naive Bayes algorithm with SMOTE was employed for sentiment classification, yielding an accuracy of 90%, precision of 90%, recall of 92%, and an F1-score of 91%. These results demonstrate the model's reliability in distinguishing between positive and negative sentiments, with a slight bias towards positive sentiments. Additionally, word cloud visualizations were generated to highlight frequently occurring words in both positive and negative reviews. The findings provide valuable insights for Blibli application developers and stakeholders, aiding in the assessment of user satisfaction and identification of areas for improvement. This research underscores the efficacy of the Naive Bayes Classifier in sentiment analysis and the utility of Google Colaboratory for data processing tasks.
Referensi
P. P. (2021). Performance Evaluation and Comparison using Deep Learning Techniques in Sentiment Analysis. Journal of Soft Computing Paradigm, 3(2), 123–134. https://doi.org/10.36548/jscp.2021.2.006
Agustina, N., Citra, D. H., Purnama, W., Nisa, C., & Kurnia, A. R. (2022). Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(1), 47–54. https://doi.org/10.57152/malcom.v2i1.195
Demircan, M., Seller, A., Abut, F., & Akay, M. F. (2021). Developing Turkish sentiment analysis models using machine learning and e-commerce data. International Journal of Cognitive Computing in Engineering, 2(October), 202–207. https://doi.org/10.1016/j.ijcce.2021.11.003
Erfina, A., & Alamsyah, M. R. N. R. (2023). Implementation of Naive Bayes classification algorithm for Twitter user sentiment analysis on ChatGPT using Python programming language. Data and Metadata, 2, 2–11. https://doi.org/10.56294/dm202345
Friedman, R. (2023). Tokenization in the Theory of Knowledge. 380–386.
Hariguna, T., & Rachmawati, V. (2019). Community Opinion Sentiment Analysis on Social Media Using Naive Bayes Algorithm Methods. IJIIS: International Journal of Informatics and Information Systems, 2(1), 33–38. https://doi.org/10.47738/ijiis.v2i1.11
Hermanto, Kuntoro, A. Y., Asra, T., Pratama, E. B., Effendi, L., & Ocanitra, R. (2020). Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm and Support Vector Machine Based Smote Technique. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012102
Jaka Harjanta, A. T., & Herlambang, B. A. (2020). Extraction Sentiment Analysis Using naive Bayes Algorithm and Reducing Noise Word applied in Indonesian Language. IOP Conference Series: Materials Science and Engineering, 835(1). https://doi.org/10.1088/1757-899X/835/1/012051
Kalmukov, Y. (2021). Using Word Clouds for Fast Identification of Papers’ Subject Domain and Reviewers’ Competences 15. Proceedings of University of Ruse, 60, 114–119.
Kosasih, R., & Alberto, A. (2021). Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier. ILKOM Jurnal Ilmiah, 13(2), 101–109. https://doi.org/10.33096/ilkom.v13i2.721.101-109
Mutiara, A. B., Wibowo, E. P., & Santosa, P. I. (2021). Improving the accuracy of text classification using stemming method , a case of non ‑ formal Indonesian conversation. Journal of Big Data, 1–16. https://doi.org/10.1186/s40537-021-00413-1
Nurcahyono, D., Putra, W. P., Najib, A., & Tulili, T. R. (2020). Analysis sentiment in social media against election using the method naive Bayes. Journal of Physics: Conference Series, 1511(1). https://doi.org/10.1088/1742-6596/1511/1/012003
Pasaribu, N. A., & Sriani. (2023). The Shopee Application User Reviews Sentiment Analysis Employing Naïve Bayes Algorithm. International Journal Software Engineering and Computer Science (IJSECS), 3(3), 194–204. https://doi.org/10.35870/ijsecs.v3i3.1699
Pratmanto, D., Rousyati, R., Wati, F. F., Widodo, A. E., Suleman, S., & Wijianto, R. (2020). App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012043
Rizkya, A. T., Rianto, R., & Gufroni, A. I. (2023). Implementation of the Naive Bayes Classifier for Sentiment Analysis of Shopee E-Commerce Application Review Data on the Google Play Store. International Journal of Applied Information Systems and Informatics (JAISI), 1(1), 31–37.
Rozaq, A., Yunitasari, Y., Sussolaikah, K., & Sari, E. R. N. (2022). Sentiment Analysis of Kampus Mengajar 2 Toward the Implementation of Merdeka Belajar Kampus Merdeka Using Naïve Bayes and Euclidean Distence Methods. International Journal of Advances in Data and Information Systems, 3(1), 30–37. https://doi.org/10.25008/ijadis.v3i1.1233
Srivastava, M., Yadav, V., & Singh, S. (2020). Implementation of Web Application for Disease Prediction Using AI. BOHR International Journal of Data Mining and Big Data, 1(1), 5–9. https://doi.org/10.54646/bijdmbd.002
Sudipa, I. G. I., Darmawiguna, I. G. M., Dendi, I. M., & Sanjaya, M. (2024). Buku ajar data mining (Issue January).
Thwe, P., Aung, Y. Y., & Lwin, C. C. (2021). Naïve Bayes Classifier for Sentiment Analysis. International Journal Of All Research Writings, 3(7), 32–35.
Tika Adilah, M., Supendar, H., Ningsih, R., Muryani, S., & Solecha, K. (2020). Sentiment Analysis of Online Transportation Service using the Naïve Bayes Methods. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012093
Uddin, M. N., Hafi, M. F. Bin, Hossain, S., & Islam, S. M. M. (2022). Drug Sentiment Analysis using Machine Learning Classifiers. International Journal of Advanced Computer Science and Applications, 13(1), 92–100. https://doi.org/10.14569/IJACSA.2022.0130112
Vangara*, R. V. B., Thirupathur, K., & Vangara, S. P. (2020). Opinion Mining Classification u sing Naive Bayes Algorithm. International Journal of Innovative Technology and Exploring Engineering, 9(5), 495–498. https://doi.org/10.35940/ijitee.e2402.039520
Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. In Artificial Intelligence Review (Vol. 55, Issue 7). Springer Netherlands. https://doi.org/10.1007/s10462-022-10144-1
Xu, Z., Shen, D., Nie, T., & Kou, Y. (2020). A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data. Journal of Biomedical Informatics, 107(June), 103465. https://doi.org/10.1016/j.jbi.2020.103465
Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning. IEEE Access, 8, 23522–23530. https://doi.org/10.1109/ACCESS.2020.2969854
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Yogiek Indra Kurniawan, Rafli Hudanul Sidiq, Azzam Dicky Umar Widadi, Afiftha Ravi Aufa Yubiharto, Akhmad Khahlil Gibran, Maulana Rizki Aditama, FX Anjar Tri Laksono

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.