Analisis Komparatif dan Evaluatif terhadap Algoritma First-Come First-Served (FCFS) dalam Penjadwalan CPU di Era Komputasi Modern

Penulis

  • Zulfahmi Indra Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Indonesia
  • Arsandi Aulia Zidan Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Indonesia
  • Ahmad Affandi Silaen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Indonesia
  • Ahmad Naufal Habibi Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Indonesia
  • Kalpin Palendeo Sitepu Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Indonesia

DOI:

https://doi.org/10.54082/jupin.1957

Kata Kunci:

First-Come First-Served, Komputasi Modern, Penjadwalan CPU, Round Robin, Shortest Job First, Sistem Operasi

Abstrak

Tinjauan literatur ini bertujuan untuk mengevaluasi kembali kredibilitas dan relevansi Algoritma First-Come, First-Served (FCFS) dalam konteks lingkungan komputasi modern. Penelitian ini menggunakan pendekatan kajian literatur sistematis (Systematic Literature Review) dengan menganalisis literatur ilmiah yang diterbitkan dalam lima tahun terakhir. Analisis komparatif dilakukan dengan membandingkan performa FCFS terhadap algoritma penjadwalan CPU lain yang populer, yaitu Shortest Job First (SJF) dan Round Robin (RR), berdasarkan metrik efisiensi, keadilan, dan kompleksitas implementasi. Hasil kajian menunjukkan bahwa FCFS, meskipun fundamental dan unggul dalam kesederhanaan, memiliki keterbatasan serius di lingkungan multitasking modern akibat efek konvoi yang signifikan. Sementara itu, SJF menawarkan efisiensi waktu tunggu terbaik namun berisiko starvation, dan RR memberikan keadilan yang tinggi dengan mengorbankan overhead context switching. Temuan ini menegaskan bahwa tidak ada satu algoritma tunggal yang optimal. Setiap algoritma merepresentasikan trade-off unik. Kontribusi penelitian ini adalah menyoroti pentingnya pemahaman terhadap FCFS sebagai fondasi konseptual yang berkelanjutan, yang kini bertindak sebagai blok bangunan penting dalam pengembangan algoritma hibrida dan sistem penjadwalan adaptif di era komputasi modern.

Referensi

Abdel-Basset, M., Mohamed, R., Abd Elkhalik, W., Sharawi, M., & Sallam, K. M. (2022). Task Scheduling Approach in Cloud Computing Environment Using Hybrid Differential Evolution. Mathematics, 10(21), 4049. https://doi.org/10.3390/math10214049

Arora, N. K., & Banyal, R. K. (2021). Workflow Scheduling Using Particle Swarm Optimization and Gray Wolf Optimization Algorithm in Cloud Computing. Concurrency and Computation Practice and Experience, 33(16). https://doi.org/10.1002/cpe.6281

Banerjee, S., & Hecker, J. P. (2016). A Multi-Agent System Approach to Load-Balancing and Resource Allocation for Distributed Computing. 41–54. https://doi.org/10.1007/978-3-319-45901-1_4

Dirdal, D. O., Vo, D., Feng, Y., & Davidrajuh, R. (2024). Developing a Platform Using Petri Nets and GPenSIM for Simulation of Multiprocessor Scheduling Algorithms. Applied Sciences, 14(13), 5690. https://doi.org/10.3390/app14135690

Eltaib, M. O., Alshammari, H., Boukrara, A., Gasmi, K., & Hrizi, O. (2022). Choosing the Best Quality of Service Algorithm Using OPNET Simulation. International Journal of Electrical and Computer Engineering (Ijece), 12(4), 4079. https://doi.org/10.11591/ijece.v12i4.pp4079-4089

Ghaffar, A., Akbari, M., & Yousufzai, M. (2021). Milad Scheduling Algorithm (MSA). Kjet. https://doi.org/10.31841/kjet.2022.22

Jamil, B., Yar, A., & Ijaz, H. (2024). Dynamic Time Quantum Computation for Improved Round Robin Scheduling Algorithm Using Quartiles and Randomization (IRRQR). Sukkur Iba Journal of Computing and Mathematical Sciences, 7(2), 25–37. https://doi.org/10.30537/sjcms.v7i2.1340

Ju, L., Yin, Z., Zhou, Q., Liu, L., Pan, Y., & Tan, Z. (2022). Near-Zero Carbon Stochastic Dispatch Optimization Model for Power-to-Gas-Based Virtual Power Plant Considering Information Gap Status Theory. International Journal of Climate Change Strategies and Management, 15(2), 105–127. https://doi.org/10.1108/ijccsm-02-2022-0018

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering | BibSonomy (2.3). https://www.bibsonomy.org/bibtex/aed0229656ada843d3e3f24e5e5c9eb9

Kruekaew, B., & Kimpan, W. (2022). Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment Using Hybrid Artificial Bee Colony Algorithm With Reinforcement Learning. Ieee Access, 10, 17803–17818. https://doi.org/10.1109/access.2022.3149955

Mostafa, S. M., & Amano, H. (2020). Dynamic Round Robin CPU Scheduling Algorithm Based on K-Means Clustering Technique. Applied Sciences, 10(15), 5134. https://doi.org/10.3390/app10155134

Omar, H. K., Jihad, K. H., & Hussein, S. F. (2021). Comparative Analysis of the Essential CPU Scheduling Algorithms. Bulletin of Electrical Engineering and Informatics, 10(5), 2742–2750. https://doi.org/10.11591/eei.v10i5.2812

Putra, T. D. (2022). Analysis of Priority Preemptive Scheduling Algorithm: Case Study. Ijarcce, 11(1). https://doi.org/10.17148/ijarcce.2022.11105

Shakor, M. Y. (2021). Scheduling and Synchronization Algorithms in Operating System: A Survey. Journal of Studies in Science and Engineering, 1(2), 1–16. https://doi.org/10.53898/josse2021121

Singh, H., Tyagi, S., Kumar, P., Gill, S. S., & Buyya, R. (2021). Metaheuristics for Scheduling of Heterogeneous Tasks in Cloud Computing Environments: Analysis, Performance Evaluation, and Future Directions. Simulation Modelling Practice and Theory, 111, 102353. https://doi.org/10.1016/j.simpat.2021.102353

Tani, H. G., & Amrani, C. E. (2016). Cloud Computing CPU Allocation and Scheduling Algorithms Using CloudSim Simulator. International Journal of Electrical and Computer Engineering (Ijece), 6(4), 1866. https://doi.org/10.11591/ijece.v6i4.pp1866-1879

Thangakumar, J., & Sambath, M. (2021). Performance Analysis of CPU Scheduling Algorithms – A Problem Solving Approach. International Journal of Science and Management Studies (Ijsms), 411–416. https://doi.org/10.51386/25815946/ijsms-v4i4p138

Diterbitkan

21-11-2025

Cara Mengutip

Indra, Z., Zidan, A. A., Silaen, A. A., Habibi, A. N., & Sitepu, K. P. (2025). Analisis Komparatif dan Evaluatif terhadap Algoritma First-Come First-Served (FCFS) dalam Penjadwalan CPU di Era Komputasi Modern. Jurnal Penelitian Inovatif, 5(4), 3197–3206. https://doi.org/10.54082/jupin.1957