Optimalisasi Mekanisme Penekan Ulir Segitiga pada Mesin Pelurus Puncher Bar untuk Meningkatkan Efisiensi Pelurusan

Penulis

  • Abd. Wahab Teknologi Rekayasa Pengelasan dan Fabrikasi, Teknik Mesin, Politeknik Sorowako, Indonesia
  • Didit Yantoni Teknologi Rekayasa Pengelasan dan Fabrikasi, Teknik Mesin, Politeknik Sorowako, Indonesia
  • Mukhlis A. Hamaruang Rekayasa Perancangan Mekanik, Teknik Mesin, Politeknik Sorowako, Indonesia
  • Ahyar Mansur Perawatan dan Perbaikan Mesin, Teknik Mesin, Politeknik Sorowako, Indonesia

DOI:

https://doi.org/10.54082/jupin.1964

Kata Kunci:

Puncher bar, ulir segitiga, pelurusan, efisiensi mekanik

Abstrak

Puncher bar merupakan komponen penting dalam industri peleburan nikel yang berfungsi untuk membuka, membersihkan, dan menjaga kelancaran aliran logam cair pada lubang tuyere. Selama operasi, puncher bar mengalami beban mekanis berulang dan paparan suhu tinggi yang menyebabkan pembengkokan serta deformasi permanen, sehingga menurunkan efisiensi kerja dan produktivitas proses peleburan. Penelitian ini bertujuan mengoptimalkan mekanisme penekan ulir segitiga pada mesin pelorus puncherbar untuk meningkatkan efisiensi pelurusan.Eksperimen dilakukan menggunakan puncher bar baja karbon ASTM A108 dengan diameter 25,4 mm dan panjang 1.778–1.905 mm, serta variasi posisi adjuster 0–6 mm. Hasil menunjukkan kebengkokan awal 30–60 mm dapat dikurangi hingga rata-rata 3 mm dalam waktu 60 detik, dengan defleksi maksimum 3 mm pada posisi adjuster 6 mm. linear antara posisi adjuster dan defleksi membuktikan kestabilan sistem serta efektivitas ulir segitiga dalam menekan fenomena springback. Penelitian ini memberikan dasar empiris bagi pengembangan desain mesin pelurus yang efisien, presisi, dan tahan terhadap deformasi elastis berulang pada aplikasi industri peleburan nikel.

Referensi

ASTM. (2018). ASTM A108-18: Standard specification for steel bar, carbon and alloy, cold- finished. ASTM International.

Bairan, J. M., Garzón, E., & Prieto, M. (2011). Effects of winding and straightening on reinforcing bars. Materiales de Construcción, 61(303), 367–384. https://doi.org/10.3989/mc.2011.62310

Bathelt, L., Scurk, M., & Winkler, M. (2023). Novel straightening-machine design with integrated force measurement for high-strength flat wire. Sensors, 23(22), 9091. https://doi.org/10.3390/s23229091

Boothroyd, G., & Knight, W. A. (2005). Fundamentals of machine tools. CRC Press.

Chen, X., Zhou, H., & Zhang, L. (2020). Experimental study on straightening parameters and bar deformation. Journal of Materials Research and Technology, 9(3), 5468–5479. https://doi.org/10.1016/j.jmrt.2020.03.089

Cui, X. L., Han, C., & He, J. (2023). Springback behavior and control strategy for dimensional accuracy of hydroformed tubular parts. International Journal of Material Forming, 16, 77–90. https://doi.org/10.1007/s12289-022-01702-0

ISO. (1998). ISO 68-1: ISO general purpose screw threads – Basic profile. International Organization for Standardization.

ISO. (2013). ISO 965-1: ISO metric screw threads – General plan. International Organization for Standardization.

Kalpakjian, S., & Schmid, S. (2014). Manufacturing engineering and technology. Pearson.

Khurmi, R. S., & Gupta, J. K. (2013). A textbook of machine design. Eurasia Publishing House.

Li, H., Zhang, X., & Liu, T. (2025). Optimization of cross-roll straightening process for 20CrMnTi bars. Metals, 15(8), 908. https://doi.org/10.3390/met15080908

Lu, H., Liu, Z., & Zhao, Y. (2023). Multi-objective optimization of springback compensation in sheet metal forming. Journal of Manufacturing Processes, 89, 53–64. https://doi.org/10.1016/j.jmapro.2023.01.007

Möller, F., Krüger, M., & Gerstmann, T. (2024). Influence of process parameters on springback resistance in stretch-bending straightening. Journal of Materials Processing Technology, 325, 118953. https://doi.org/10.1016/j.jmatprotec.2024.118953

Rao, S. S. (2017). Mechanical vibrations and structural analysis in straightening processes. Journal of Materials Processing Technology, 249, 35–42. https://doi.org/10.1016/j.jmatprotec.2017.05.005

Sanjib, C., & Kiran, A. (2022). Theoretical approach on factorial design for residual curvature in bar straightening. Journal of Production Engineering, 25(2), 47–54.

Shigley, J. E., Mischke, C. R., & Budynas, R. G. (2011). Mechanical engineering design. McGraw-Hill.

Wahab, A., & Hamarung, M. A. (2024). Rancang bangun alat pelurus puncher bar. Jurnal Engine, 8(1), 15–23.

Zhang, Y., Xu, Q., & Li, M. (2018). Analytical model for straightening of metal bars considering hardening features. Advances in Mechanical Engineering, 10(9), 1–14. https://doi.org/10.1177/1687814018798579

Diterbitkan

09-02-2026

Cara Mengutip

Wahab, A., Yantoni, D., Hamaruang, M. A., & Mansur, A. (2026). Optimalisasi Mekanisme Penekan Ulir Segitiga pada Mesin Pelurus Puncher Bar untuk Meningkatkan Efisiensi Pelurusan . Jurnal Penelitian Inovatif, 6(1), 287–298. https://doi.org/10.54082/jupin.1964