Pengaruh Varietas Kentang dan Spektrum Cahaya Light Emitting Diode terhadap Kandungan Klorofil Planlet Kentang pada Sistem Kultur In Vitro
DOI:
https://doi.org/10.54082/jupin.2248Kata Kunci:
Fisiologis, kultur in vitro, spektrum cahaya LED, varietas kentangAbstrak
Keterbatasan kajian mengenai pengaruh spektrum cahaya LED terhadap respons fisiologis berbagai varietas kentang pada kultur in vitro masih menjadi kendala dalam upaya optimalisasi produksi bibit secara efisien. Variasi spektrum cahaya diketahui dapat memengaruhi proses fotosintesis, pertumbuhan, serta akumulasi klorofil planlet secara berbeda antardiferensiasi varietas. Penelitian ini bertujuan untuk mengetahui pengaruh spektrum cahaya LED terhadap fisiologis eksplan kentang pada kultur in vitro, pengaruh varietas kentang terhadap fisiologis eksplan kentang pada kultur in vitro dan serta interaksi antara keduanya. Lima jenis spektrum cahaya LED diaplikasikan dan dilihat pengaruhnya terhadap pertumbuhan eksplan 5 varietas kentang in vitro. Percoabaan menggunakan Rancangan Split-plot tiga ulangan dengan rancangan dasar RAKL. Kandungan klorofil planlet kentang diukur menggunakan metode Arnon (1949) melalui ekstraksi 0,1 g daun dengan aseton 80%, dilanjutkan pengukuran absorbansi pada λ 645 nm dan 663 nm. Data dianalisis menggunakan uji F dan dilanjutkan dengan uji DMRT pada taraf 5%. Hasil penelitian menunjukkan bahwa spektrum cahaya LED berpengaruh sangat nyata terhadap fisiologis eksplan kentang pada minggu keempat setelah kultur, dengan cahaya putih dan kombinasi cahaya red-green-blue (RGB) menghasilkan kandungan klorofil tertinggi. Varietas kentang berpengaruh sangat nyata terhadap fisiologis eksplan kentang pada kultur in vitro, dengan varietas Tedjo MZ menunjukkan performa terbaik. Tidak ada interaksi nyata antara varietas kentang dan spektrum cahaya LED terhadap fisiologis planlet kentang pada kultur in vitro. Temuan ini memberikan dasar ilmiah bagi optimasi sistem pencahayaan kultur in vitro kentang untuk meningkatkan efisiensi produksi bibit berkualitas.
Referensi
Arnon, D. I. (1949). Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris . Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
Chen, L., Xue, X., Yang, Y., Chen, F., Zhao, J., Wang, X., & Khan, A. T. (2018). Effects of red and blue LEDs on in vitro growth and microtuberization of potato single-node cuttings. Frontiers of Agricultural Science and Engineering, 5(2), 197–205.
Cortiello, M., Milc, J., Sanfelici, A., Martini, S., Tagliazucchi, D., Caccialupi, G., Ben Hassine, M., Giovanardi, D., Francia, E., & Caradonia, F. (2024). Genotype and Plant Biostimulant Treatments Influence Tuber Size and Quality of Potato Grown in the Pedoclimatic Conditions in Northern Apennines in Italy. International Journal of Plant Production, 18(4), 579–599. https://doi.org/10.1007/s42106-024-00311-5
Grishchenko, O. V, Subbotin, E. P., Gafitskaya, I. V, Vereshchagina, Y. V, Burkovskaya, E. V, Khrolenko, Y. A., Grigorchuk, V. P., Nakonechnaya, O. V, Bulgakov, V. P., & Kulchin, Y. N. (2022). Growth of micropropagated Solanum tuberosum L . Plantlets under Artificial Solar Spectrum and Different Mono- and Polychromatic LED Lights. Horticultural Plant Journal, 8(2), 205–214. https://doi.org/10.1016/j.hpj.2021.04.007
Guo, R., Jin, Y., Liu, J., Yang, H., Cheng, L., & Yu, B. (2025). Harnessing Light Quality for Potato Production: Red and Blue Light as Key Regulators of Growth and Yield. Plants, 14(7), 1–20. https://doi.org/10.3390/plants14071039
Huh, M. K., & Lee, B. (2022). Changes in the Chlorophyll of Garlic Chives (Allium tuberosum) Resulting from Fertilizer and Drought Stress. The Korean Journal of Life Science, 32(10), 743-748.
Kumar, J., & Ranjan, R. (2025). Potato seed production through microtubers : A review with emphasis on future opportunities in Bihar. International Journal of Agriculture Sciences, 14(6), 159–161.
Lingvay, M., Akhtar, P., Sebők-Nagy, K., Páli, T., & Lambrev, P. H. (2020). Photobleaching of Chlorophyll in Light-Harvesting Complex II Increases in Lipid Environment. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.00849
Lisina, T., Korlyakov, К., & Scherbyonok, S. (2024). Influence of Lighting Spectral Composition on the Development of Potato Plants in vitro. International Journal, 9(2), 68–75.
Meise, P., Jozefowicz, A. M., Uptmoor, R., Mock, H. P., Ordon, F., & Schum, A. (2017). Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro. Journal of proteomics, 166, 68-82
Murillo-Talavera, M. M., Pedraza-Santos, M. E., Gutierrez-Rangel, N., Rodriguez-Mendoza, M. D. L. N., Lobit, P., & Martinez-Palacios, A. (2016). Led light quality and in vitro development of Oncidium tigrinum and Laelia autumnalis (orchidaceae). Agrociência, 50(8), 1065-1080.
Mustofa, L. (2022). Pengaruh cahaya LED (Light Emite Dioda) biru, merah, dan putih terhadap kadar klorofil tanaman sawi hijau (Brassica juncea L) (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).
Namira, S., Rahmawati, N., & Mawarni, L. (2019). Physiological Characteristics Analysis of Leaves of Several Sweet Potato (Ipomoea batatas L.) Genotypes on Various Watering Level. In Proceedings of the International Conference on Natural Resources and Technology.. https://doi.org/10.5220/0008552102230228
Potato News Today. (2024, 6 Januari). Global potato production: Insights from the FAO's latest data. https://www.potatonewstoday.com/2024/01/06/global-potato-production-insights-from-the-faos-latest-data/
Rahman, H., Azad, O. K., Islam, J., Rana, S., & Li, K. (2021). Production of Potato (Solanum tuberosum L.) Seed Tuber under Artificial LED Light Irradiation in Plant Factory. Plants, 10(2), 297.
Rahmawati, N., Rahayu, L., & Rizqiana, Y. (2020). Feasibility of Potato Farming with Ex Vitro and Non Ex Vitro Seeds in the Batur District, Banjarnegara Regency. In 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019) (pp. 336-340). Atlantis Press. https://doi.org/10.2991/aer.k.200325.066
Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., & León-Sánchez, I. J. (2017). South African Journal of Botany Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany, 109, 288–293. https://doi.org/10.1016/j.sajb.2017.01.205
Shi, H., Lu, X., Sun, T., Liu, X., Huang, X., Tang, Z., Li, Z., Xiang, Y., Zhang, F., & Zhen, J. (2024). Monitoring of Chlorophyll Content of Potato in Northern Shaanxi Based on Different Spectral Parameters. Plants, 13(10), 1–17. https://doi.org/10.3390/plants13101314
Sumi, M. J., Jahan, N., Thamid, S. S., Tarik, M. E. I., Hassannejad, S., Rahimi, M., & Imran, S. (2025). LED light effect on growth, pigments, and antioxidants of lettuce (Lactuca sativa L.) baby greens. BMC Plant Biology, 25(1). https://doi.org/10.1186/s12870-025-06621-8
Vollmer, R., Espirilla, J., Espinoza, A., Villagaray, R., Castro, M., Pineda, S., Carlos, J., Mello, A. F. S., & Azevedo, V. C. R. (2024). Effect of Gas Exchange Rate, Vessel Type, Planting Density, and Genotype on Growth, Photosynthetic Activity, and Ion Uptake In Vitro Potato Plants. Plants, 13(19), 2830.
Xu, J., Yan, Z., Xu, Z., Wang, Y., & Xie, Z. (2018). Transcriptome analysis and physiological responses of the potato plantlets in vitro under red, blue, and white light conditions. 3 Biotech, 8(9), 1–11. https://doi.org/10.1007/s13205-018-1410-0
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2026 Prasetiyo Dwi Nurwidodo, Suprayogi Suprayogi, Noor Farid

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.



